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Published online: 29 June 2005 – c© Società Italiana di Fisica / Springer-Verlag 2005

Abstract. Neutron-deficient α-decaying nuclei have been produced using fusion-evaporation reactions. A
gas-filled recoil separator was used to separate the fusion products from the scattered beam. The activities
were implanted in a position sensitive silicon detector. The isotopes were identified using spatial and
time correlations between implants and decays. During ten years of operation time about twenty new
α-decaying isotopes have been identified in the translead region. In addition numerous α-decay studies
have been performed on already known isotopes yielding much improved precision for the measured decay
properties. An overview of the α-decay studies performed for the translead nuclei employing the gas-filled
recoil separator will be given.

PACS. 23.60.+e α decay – 27.80.+w 190 ≤ A ≤ 219

The gas-filled recoil separator RITU [1] at Jyväskylä
Accelerator Laboratory (JYFL) has been used intensively
for α-decay studies of heavy neutron-deficient nuclei for
about ten years. Most of these studies have been per-
formed in the translead region at the extreme limit of
nuclear existence. The low production yields due to the
strong fission competition have demanded high perfor-
mance from the separator system and from the focal plane
detector system used in these studies.

In the present work α-decay hindrance factors HF
and reduced widths δ2, determined according to Ras-
mussen [2], have been used to obtain structure informa-
tion of the decaying states. The hindrance factor is de-
fined as the ratio of the reduced width of the ground state
to ground state transition in the closest even-even neigh-
bor to the reduced width of the transition in question. In
odd-mass nuclei a hindrance factor of less than 4 implies
an unhindered decay between states of equal spin, parity,
and configuration [3]. For even-even nuclei the systematic
study of reduced widths δ2 is used to obtain important
structure information on the decaying states. In the lead
region the multiproton-multihole intruder states and the
occurrence of shape coexistence have been investigated us-
ing α-decay as a spectroscopic tool [4,5]. In addition the
vicinity of the proton drip line has offered the possibility
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to study proton-unbound systems and even to search for
direct proton emission [6,7,8]. While in the lead region
the proton drip line crosses the magic proton number 82
at the neutron mid-shell, in the uranium region the drip
line crosses the magic neutron number 126. One of the re-
cently investigated isotopes has been the semi magic nu-
cleus 218U for which two α-decaying isomeric states were
observed [9]. In addition to the structural information the
present α-decay studies have given a lot of valuable infor-
mation for the mass evaluations [10].

When the reduced widths for the ground state to
ground state transitions are reviewed it can be noticed
that they remain constant for even-mass Po isotopes
lighter than 196Po and even decrease significantly for
188Po. This behaviour is illustrated in fig. 1a. The reason
for this is that the α-decays from the Po 0+ ground states
to the proton (2p-2h) 0+ intruder states in Pb nuclei are
getting increasingly favorable. The interpretation has been
that the ground states of neutron-deficient Po isotopes are
mixtures of different configurations, spherical π(2p-0h),
oblate π(4p-2h) (and prolate π(6p-4h)). Recently α-decay
properties of very neutron-deficient Rn nuclei were stud-
ied in Jyväskylä [11]. Intriguingly it was noticed that the
α-decays of 198Rn and 196Rn were clearly faster than the
smooth behaviour of heavier even-mass Rn isotopes pre-
dicts (fig. 1a.). The conclusion from this study was that
especially in the case of 196Rn the α-decay is taking place
between deformed (and strongly mixed) 0+ ground states.
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Fig. 1. Reduced α-decay width values of neutron-deficient
Fr, Rn, At and Po isotopes. (a) Radons and poloniums are
compared, (b) poloniums and astatines are compared and
(c) radons and franciums are compared.

The α-decaying proton intruder state ((πs−1

1/2
)1/2+)

has been shown to exist in many odd-mass Bi iso-
topes [12] and in At isotopes (investigated recently in
Jyväskylä) [6,7]. A falling trend of excitation energy of
the (πs−1

1/2
)1/2+ state as a function of decreasing neutron

number has been observed. Actually the (πs−1

1/2
)1/2+ pro-

ton intruder state becomes the ground state in 195At [6]
and in 185Bi [13,14]. The (πs−1

1/2
)1/2+ proton intruder

state remains as a ground state in 193At and in 191At [7].
In fig. 1b the reduced widths determined for the odd-mass
At isotopes are shown together with the reduced widths
determined for the even-mass Po isotopes. The reduced-
width values obtained for the α-decays from the high-spin
isomers ((πh9/2)9/2

−) in At follow nicely the reduced-
width values obtained for the ground state to ground
state decays in Po. However, the reduced-width values
obtained for the α-decays from the low-spin isomeric
intruder states ((πs−1

1/2
)1/2+) in At are slightly higher.

When more neutron-deficient nuclei are considered these
reduced-width values start to follow the reduced-width
values obtained for the α-decays from the Po 0+ ground
states to the proton (2p-2h) 0+ intruder states in Pb. The

work has been extended and recently the neutron-deficient
Fr isotopes were examined using RITU [8]. For the first
time, a (πs−1

1/2
)1/2+ proton intruder state was also identi-

fied in a Fr isotope, namely in 201Fr. This is illustrated in
fig. 1c from where it can be noticed that again the α-decay
from the low-spin isomeric intruder state is relatively
faster than the α-decay from the high-spin ground state.

The work [8] and the work [6] suggest the existence of
a low-lying 1/2+ proton intruder isomeric (ground) state
in 199Fr. Since the (πh9/2)9/2

− state is associated with

the spherical shape and the (πs−1

1/2
)1/2+ proton intruder

state is associated with an oblate character an onset of
substantial deformation is expected to occur at neutron
number N = 112 in odd-mass Fr isotopes.

In conclusion, the reduced widths deduced from the
measured decay properties for the neutron-deficient odd-
mass Fr isotopes and even-mass Rn isotopes suggest an on-
set of substantial deformation at neutron numberN = 112
and at N = 110, respectively. This can be compared to
the prediction of Möller et al. [15] where the predicted
onset of deformation for Fr nuclei occurs at neutron num-
ber N = 116 and for Rn nuclei occurs at neutron number
N = 114.
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